Near-unanimity terms are decidable

Miklós Maróti
University of Szeged
Nashville, June 12-16, 2007

Def. An n-ary operation f on a set A is a near-unanimity operation, if $n \geq 3$ and for all $x, y \in A$

$$
f(y, x, \ldots, x)=f(x, y, x, \ldots, x)=\cdots=f(x, \ldots, x, y)=x
$$

Typical example: lattices, algebras with lattice reducts:

$$
m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)
$$

If a finite algebra \mathbf{A} has a near-unanimity term operation, then

- the variety $\mathcal{V}(\mathbf{A})$ is congruence-distributive
- the variety $\mathcal{V}(\mathbf{A})$ is finitely axiomatizable
- the clone $\mathrm{Clo}(\mathbf{A})$ is finitely generated
- the relational clone $\operatorname{Inv}(\operatorname{Clo}(\mathbf{A}))$ is finitely generated
- the constraint satisfaction problem for \mathbf{A} is tractable
- the algebra \mathbf{A} admits a natural duality

Def. An n-ary operation f on a set A is a near-unanimity operation, if $n \geq 3$ and for all $x, y \in A$

$$
f(y, x, \ldots, x)=f(x, y, x, \ldots, x)=\cdots=f(x, \ldots, x, y)=x
$$

Typical example: lattices, algebras with lattice reducts:

$$
m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)
$$

If a finite algebra \mathbf{A} has a near-unanimity term operation, then

- the variety $\mathcal{V}(\mathbf{A})$ is congruence-distributive
- the variety $\mathcal{V}(\mathbf{A})$ is finitely axiomatizable
- the clone $\operatorname{Clo}(\mathbf{A})$ is finitely generated
- the relational clone $\operatorname{Inv}(\operatorname{Clo}(\mathbf{A}))$ is finitely generated
- the constraint satisfaction problem for \mathbf{A} is tractable
- the algebra \mathbf{A} admits a natural duality

Natural duality problem:
Input: finite algebra \mathbf{A} with finite signature
Problem: decide whether \mathbf{A} admits a natural duality

Thm. (Davey, Heindorf and McKenzie, 1995)

An algebra generating a congruence distributive variety admits a natural duality if and only if it has a near-unanimity term operation.

Near-unanimity problem:
Input: finite algebra \mathbf{A} with finite signature
Problem: decide whether \mathbf{A} has a near-unanimity term operation
The set of n-ary operations in the clone $\mathrm{Clo} \mathbf{A}$ can be easily computed,
but the arity of the near-unanimity operation is unknown
Thm. The existence of near-unanimity operation is not equivalent with any Mal'tsev condition of bounded arity operations

Natural duality problem:

Input: finite algebra \mathbf{A} with finite signature
Problem: decide whether \mathbf{A} admits a natural duality

Thm. (Davey, Heindorf and McKenzie, 1995)

An algebra generating a congruence distributive variety admits a natural duality if and only if it has a near-unanimity term operation.

Near-unanimity problem:

Input: finite algebra \mathbf{A} with finite signature
Problem: decide whether \mathbf{A} has a near-unanimity term operation
The set of n-ary operations in the clone $\operatorname{Clo} \mathbf{A}$ can be easily computed, but the arity of the near-unanimity operation is unknown

Thm. The existence of near-unanimity operation is not equivalent with any Mal'tsev condition of bounded arity operations

Let \mathbf{A} be an algebra and $\mathbf{B}=\mathbf{F}_{\mathcal{V}(\mathbf{A})}$ (2) be the two-generated free algebra. Then the following are equivalent:

- A has a near-unanimity term operation
- B has a term operation that is a near-unanimity operation on the generating set $\{x, y\}$ of \mathbf{B}
- The subalgebra of \mathbf{B}^{ω} generated by the tuples

$$
\begin{aligned}
& \bar{y}_{0}=\langle y, x, x, \ldots\rangle \\
& \bar{y}_{1}=\langle x, y, x, \ldots\rangle \\
& \bar{y}_{2}=\langle x, x, y, \ldots\rangle
\end{aligned}
$$

contains the tuple

$$
\bar{x}=\langle x, x, x, \ldots\rangle
$$

Thm. (McKenzie, 1997)
It is undecidable for a finite algebra \mathbf{B} and two elements $x, y \in B$ whether
B has a term operation that is a near-unanimity operation on $\{x, y\}$.

Def. A Minsky machine has two registers R_{1}, R_{2} that can contain arbitrary natural numbers. The program is a finite set of states, containing an initial and halting state, and a finite list of commands of the form

- in state i increase the value of register R_{r} by one and go to state j,
- in state i if the value of register R_{r} is zero then go to state j, otherwise decrease the value of the register by one and go to state k.

Thm. It is undecidable for a finite algebra \mathbf{B} and two elements $x, y \in B$ whether \mathbf{B} has a term operation that is a near-unanimity operation on $B \backslash\{x, y\}$.

Idea:

- Minsky-machine \mathcal{M} halts (finite computation) iff an algebra $\mathbf{B}(\mathcal{M})$ has a "partial" near-unanimity term operation (finite term)
- full control over the elements and operations of $\mathbf{B}(\mathcal{M})$
- almost majority operation $m(x, y, z, u)$ that needs a "key" term in place of u to unlock it
- term u is slim (forced shape), contains the halting computation of \mathcal{M}
- $\mathbf{B}(\mathcal{M})$ has an absorbing element to propagate local inconsistencies to the root

Motivation: Let $\mathbf{C}=\langle C ; F\rangle$ be an infinite algebra of finite signature, and $X, Y \subseteq C$. Assume that there exists a congruence $\vartheta \in \operatorname{Con} \mathbf{C}$ such that

- ϑ has finitely many equivalence classes,
- X is a union of equivalence classes,
- the membership problem in ϑ is decidable, then the problem of whether X and $\operatorname{Sg}_{\mathbf{C}}(Y)$ are disjoint is decidable.

$$
f\left(a_{1}, \ldots, a_{n}\right) \vartheta f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right) .
$$

\square

Motivation: Let $\mathbf{C}=\langle C ; F\rangle$ be an infinite algebra of finite signature, and $X, Y \subseteq C$. Assume that there exists a congruence $\vartheta \in \operatorname{Con} \mathbf{C}$ such that

- ϑ has finitely many equivalence classes,
- X is a union of equivalence classes,
- the membership problem in ϑ is decidable, then the problem of whether X and $\operatorname{Sg}_{\mathbf{c}}(Y)$ are disjoint is decidable.

Def. Let $\mathbf{C}=\langle C ; F\rangle$ be an algebra. The equivalence relation ϑ is a weak congruence of \mathbf{C} with respect to a monoid $E \leq$ End \mathbf{C} of endomorphisms if

- every class of ϑ is closed under the endomorphisms in E,
- for every n-ary operation $f \in F$ and pairs $\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle \in \vartheta$ there exist endomorphisms $e_{1}, \ldots, e_{n} \in E$ such that

$$
f\left(a_{1}, \ldots, a_{n}\right) \vartheta f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right)
$$

Thm. The second condition also holds for arbitrary terms.

Def. The quotient \mathbf{C} / ϑ is a multi-valued algebra on the set C / ϑ of equivalence classes where

- for each operation symbol $f \in F$ a family $\left\{f_{e_{1}, \ldots, e_{n}}: e_{1}, \ldots, e_{n} \in E\right\}$ of operations are defined as

$$
f_{e_{1}, \ldots, e_{n}}\left(b_{1} / \vartheta, \ldots, b_{n} / \vartheta\right):=f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right) / \vartheta
$$

- the endomorphisms in E induce the identity operation on \mathbf{C} / ϑ

- the multi-valued operations of \mathbf{C} / ϑ are effectively computable

Def. The quotient \mathbf{C} / ϑ is a multi-valued algebra on the set C / ϑ of equivalence classes where

- for each operation symbol $f \in F$ a family $\left\{f_{e_{1}, \ldots, e_{n}}: e_{1}, \ldots, e_{n} \in E\right\}$ of operations are defined as

$$
f_{e_{1}, \ldots, e_{n}}\left(b_{1} / \vartheta, \ldots, b_{n} / \vartheta\right):=f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right) / \vartheta
$$

- the endomorphisms in E induce the identity operation on \mathbf{C} / ϑ

Thm. Let $\mathbf{C}=\langle C ; F\rangle$ be an infinite algebra of finite signature, and $X, Y \subseteq C$. Assume that there exists a weak congruence $\vartheta \in \mathrm{Con} \mathbf{C}$ with respect to a monoid $E \subseteq$ End \mathbf{C} of endomorphisms such that

- ϑ has finitely many equivalence classes,
- X is a union of equivalence classes,
- the membership problem in ϑ is decidable,

Def. The quotient \mathbf{C} / ϑ is a multi-valued algebra on the set C / ϑ of equivalence classes where

- for each operation symbol $f \in F$ a family $\left\{f_{e_{1}, \ldots, e_{n}}: e_{1}, \ldots, e_{n} \in E\right\}$ of operations are defined as

$$
f_{e_{1}, \ldots, e_{n}}\left(b_{1} / \vartheta, \ldots, b_{n} / \vartheta\right):=f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right) / \vartheta
$$

- the endomorphisms in E induce the identity operation on \mathbf{C} / ϑ

Thm. Let $\mathbf{C}=\langle C ; F\rangle$ be an infinite algebra of finite signature, and $X, Y \subseteq C$. Assume that there exists a weak congruence $\vartheta \in \mathrm{Con} \mathbf{C}$ with respect to a monoid $E \subseteq$ End \mathbf{C} of endomorphisms such that

- ϑ has finitely many equivalence classes,
- X is a union of equivalence classes,
- the membership problem in ϑ is decidable,
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes (i.e. $E(Y) \subseteq \operatorname{Sg}_{\mathbf{c}}(Y)$),

Def. The quotient \mathbf{C} / ϑ is a multi-valued algebra on the set C / ϑ of equivalence classes where

- for each operation symbol $f \in F$ a family $\left\{f_{e_{1}, \ldots, e_{n}}: e_{1}, \ldots, e_{n} \in E\right\}$ of operations are defined as

$$
f_{e_{1}, \ldots, e_{n}}\left(b_{1} / \vartheta, \ldots, b_{n} / \vartheta\right):=f\left(e_{1}\left(b_{1}\right), \ldots, e_{n}\left(b_{n}\right)\right) / \vartheta
$$

- the endomorphisms in E induce the identity operation on \mathbf{C} / ϑ

Thm. Let $\mathbf{C}=\langle C ; F\rangle$ be an infinite algebra of finite signature, and $X, Y \subseteq C$. Assume that there exists a weak congruence $\vartheta \in \mathrm{Con} \mathbf{C}$ with respect to a monoid $E \subseteq$ End \mathbf{C} of endomorphisms such that

- ϑ has finitely many equivalence classes,
- X is a union of equivalence classes,
- the membership problem in ϑ is decidable,
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes (i.e. $E(Y) \subseteq \operatorname{Sg}_{\mathbf{c}}(Y)$),
- the multi-valued operations of \mathbf{C} / ϑ are effectively computable then the problem of whether X and $\operatorname{Sg}_{\mathbf{c}}(Y)$ are disjoint is decidable.

Application: The near-unanimity problem is decidable.

Def. For a permutation $\pi \in S_{\omega}$ let e_{π} be the automorphism of \mathbf{B}^{ω} that permutes the coordinates, i.e.

$$
e_{\pi}(\bar{b})=e_{\pi}\left(\left\langle b_{0}, b_{1}, \ldots\right\rangle\right)=\left\langle b_{\pi(0)}, b_{\pi(1)}, \ldots\right\rangle
$$

The weak congruence ϑ with respect to $E=\left\{e_{\pi}: \pi \in S_{\omega}\right\}$ is defined as

$$
\bar{a} \vartheta \bar{b} \Longleftrightarrow \bar{a}=e_{\pi}(\bar{b}) \text { for some } \pi \in S_{w}
$$

$$
\Longleftrightarrow \text { the elements of } \bar{a} \text { and } \bar{b} \text { are the same with multiplicities. }
$$

Application: The near-unanimity problem is decidable.
Let $\mathbf{A}=\langle A ; F\rangle$ be a finite algebra, $\mathbf{B}=\mathbf{F}_{\mathcal{V}(\mathbf{A})}(2)$ the free algebra generated by $\{x, y\}, \mathbf{C}=\mathbf{B}^{\omega}, X=\{\langle x, x, \ldots\rangle\}$, and $Y=\left\{\bar{y}_{i}: i \in \omega\right\}$ where $\bar{y}_{i}=\left\langle x, \ldots, x, y^{-}, x, \ldots\right\rangle$.

Def. For a permutation $\pi \in S_{\omega}$ let e_{π} be the automorphism of \mathbf{B}^{ω} that permutes the coordinates, i.e.

$$
e_{\pi}(\bar{b})=e_{\pi}\left(\left\langle b_{0}, b_{1}, \ldots\right\rangle\right)=\left\langle b_{\pi(0)}, b_{\pi(1)}, \ldots\right\rangle
$$

$\bar{a} \vartheta \bar{b} \Longleftrightarrow \bar{a}=e_{\pi}(\bar{b})$ for some $\pi \in S_{\omega}$
\Longleftrightarrow the elements of \bar{a} and \bar{b} are the same with multiplicities.

Application: The near-unanimity problem is decidable.
Let $\mathbf{A}=\langle A ; F\rangle$ be a finite algebra, $\mathbf{B}=\mathbf{F}_{\mathcal{V}(\mathbf{A})}(2)$ the free algebra generated by $\{x, y\}, \mathbf{C}=\mathbf{B}^{\omega}, X=\{\langle x, x, \ldots\rangle\}$, and $Y=\left\{\bar{y}_{i}: i \in \omega\right\}$ where $\bar{y}_{i}=\left\langle x, \ldots, x, y^{-}, x, \ldots\right\rangle$.

Def. For a permutation $\pi \in S_{\omega}$ let e_{π} be the automorphism of \mathbf{B}^{ω} that permutes the coordinates, i.e.

$$
e_{\pi}(\bar{b})=e_{\pi}\left(\left\langle b_{0}, b_{1}, \ldots\right\rangle\right)=\left\langle b_{\pi(0)}, b_{\pi(1)}, \ldots\right\rangle
$$

The weak congruence ϑ with respect to $E=\left\{e_{\pi}: \pi \in S_{\omega}\right\}$ is defined as

$$
\begin{aligned}
\bar{a} \vartheta \bar{b} & \Longleftrightarrow \bar{a}=e_{\pi}(\bar{b}) \text { for some } \pi \in S_{\omega} \\
& \Longleftrightarrow \text { the elements of } \bar{a} \text { and } \bar{b} \text { are the same with multiplicities. }
\end{aligned}
$$

Def. The characteristic function of $\bar{a} \in \mathbf{B}^{\omega}$ is the map $\chi_{\bar{a}}: B \rightarrow \omega^{+}$ defined as

$$
\chi_{\bar{a}}(t)=\left|\left\{i \in \omega: a_{i}=t\right\}\right| .
$$

Example. For $\bar{x}=\langle x, x, \ldots\rangle$ and $t \in B$

$$
\chi_{\bar{x}}(t)= \begin{cases}\omega & \text { if } t(x, y)=x \\ 0 & \text { otherwise }\end{cases}
$$

Example. For $\bar{y}_{i}=\langle x, \ldots, x, y, x, \ldots\rangle$ and $t \in B$

$$
\chi_{\bar{y}_{i}}(t)= \begin{cases}1 & \text { if } t(x, y)=y \\ \omega & \text { if } t(x, y)=x \\ 0 & \text { otherwise }\end{cases}
$$

Note: ϑ is the kernel of the map $\chi: \mathbf{B}^{\omega} \rightarrow\left(\omega^{+}\right)^{B}, \bar{a} \mapsto \chi_{\bar{a}}$.

Conditions:

- ϑ has finitely many equivalence classes: not true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{c}(Y)$ is a union of equivalence classes: true
- the multi-valued operations of C / ϑ are effectively computable: true

$$
\begin{aligned}
& \text { Take a ternary operation } f \in F \text {, elements } \bar{a}, \bar{b}, \bar{c} \in \mathbf{B}^{\omega} \text {, permutations } \\
& \pi, \sigma, \tau \in S_{\omega} \text {. We need to find the class of } f\left(e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})\right) \text { : } \\
& \qquad \begin{aligned}
\bar{a} & =\left\langle a_{0}, a_{1}, \ldots, a_{j-1}, a_{j}, a_{j}, a_{j}, \ldots\right\rangle \\
\bar{b} & =\left\langle b_{0}, b_{1}, \ldots \ldots, b_{k-1}, b_{k}, b_{k}, b_{k}, \ldots\right\rangle \\
\bar{c} & =\left\langle c_{0}, c_{1}, \ldots \ldots \ldots, c_{l-1}, c_{l}, c_{l}, c_{l}, \ldots\right\rangle
\end{aligned}
\end{aligned}
$$

At most $j+k+I$ columns of $e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})$ differ from $\left\langle a_{j}, b_{k}, c_{l}\right\rangle$, so we may assume that the permutations move only the first $j+k+l$ many elements: finitely many choices

Conditions:

- ϑ has finitely many equivalence classes: not true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{C}}(Y)$ is a union of equivalence classes: true
- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true

```
Take a ternary operation f}\inF\mathrm{ , elements }\overline{a},\overline{b},\overline{c}\in\mp@subsup{\mathbf{B}}{}{\omega}\mathrm{ , permutations
\pi,\sigma,\tau\inS S
\overline { \overline { a } } = \langle a _ { 0 } , a _ { 1 } , \ldots , a _ { j - 1 } , a _ { j } , a _ { j } , a _ { j } , \ldots . \rangle
\overline{b}}=\langle\mp@subsup{b}{0}{},\mp@subsup{b}{1}{},\ldots..,\mp@subsup{b}{k-1}{},\mp@subsup{b}{k}{},\mp@subsup{b}{k}{},\mp@subsup{b}{k}{},\ldots
```


At most $j+k+I$ columns of $e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})$ differ from $\left\langle a_{j}, b_{k}, c_{l}\right\rangle$, so we may assume that the permutations move only the first $j+k+I$ many elements: finitely many choices

Conditions:

- ϑ has finitely many equivalence classes: not true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{c}(Y)$ is a union of equivalence classes: true
- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true

At most $j+k+I$ columns of $e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})$ differ from $\left\langle a_{j}, b_{k}, c_{l}\right\rangle$, so we may assume that the permutations move only the first $j+k+l$ many elements: finitely many choices

Conditions:

- ϑ has finitely many equivalence classes: not true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes: true
- the multi-valued operations of C / ϑ are effectively computable: true

At most $j+k+I$ columns of $e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})$ differ from $\left\langle a_{j}, b_{k}, c_{l}\right\rangle$, so we may assume that the permutations move only the first $j+k+I$ many elements: finitely many choices

Conditions:

- ϑ has finitely many equivalence classes: not true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{C}}(Y)$ is a union of equivalence classes: true
- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true

Take a ternary operation $f \in F$, elements $\bar{a}, \bar{b}, \bar{c} \in \mathbf{B}^{\omega}$, permutations $\pi, \sigma, \tau \in S_{\omega}$. We need to find the class of $f\left(e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})\right)$:

$$
\begin{aligned}
& \bar{a}=\left\langle a_{0}, a_{1}, \ldots, a_{j-1}, a_{j}, a_{j}, a_{j}, \ldots\right\rangle \\
& \bar{b}=\left\langle b_{0}, b_{1}, \ldots \ldots, b_{k-1}, b_{k}, b_{k}, b_{k}, \ldots\right\rangle \\
& \bar{c}=\left\langle c_{0}, c_{1}, \ldots \ldots, c_{l-1}, c_{l}, c_{l}, c_{l}, \ldots\right\rangle
\end{aligned}
$$

At most $j+k+l$ columns of $e_{\pi}(\bar{a}), e_{\sigma}(\bar{b}), e_{\tau}(\bar{c})$ differ from $\left\langle a_{j}, b_{k}, c_{l}\right\rangle$, so we may assume that the permutations move only the first $j+k+l$ many elements: finitely many choices

Def. For a fixed positive integer m let r be the automorphism of \mathbf{B}^{ω} that inserts m new copies of the first coordinate:

$$
r\left(\left\langle b_{0}, b_{1}, b_{2}, \ldots\right\rangle\right)=\langle\underbrace{b_{0}, b_{0}, \ldots, b_{0}}_{m+1 \text {-many }}, b_{1}, b_{2}, \ldots\rangle
$$

Let $E \leq$ End \mathbf{B}^{ω} be the monoid generated by the r and $\left\{e_{\pi}: \pi \in S_{\omega}\right\}$, and ϑ the corresponding smallest weak congruence on \mathbf{B}^{ω}.

The number of occurrences of an element $t \in B$ in a tuple $\bar{b} \in B$

- 0: does not occur,
- $1, \ldots, m-1$: occurs this many times modulo m,
- m: occurs m-multiple many times (at least once),
- ω occurs infinitely many times.

Def. characteristic function: $\chi_{\bar{b}}: B \rightarrow\{0,1, \ldots, m, \omega\}$
There are finitely many characteristic functions!

Conditions:

- ϑ has finitely many equivalence classes: true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{c}(Y)$ is a union of equivalence classes: not true

and by changing the generator set Y.
- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true,

Conditions:

- ϑ has finitely many equivalence classes: true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes: not true

For example, $r(\langle y, x, x, \ldots\rangle)=\langle\underbrace{y, \ldots, y}_{m+1 \text {-many }}, x, x, \ldots\rangle \notin \operatorname{Sg}_{\mathbf{C}}(Y)$.
True, if \mathbf{B} has an $m+1$-ary minority term.
Can be fixed in general with an
$m+1$-ary special weak near-unanimity operation:
and by changing the generator set Y

- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true,

Conditions:

- ϑ has finitely many equivalence classes: true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes: not true

For example, $r(\langle y, x, x, \ldots\rangle)=\langle\underbrace{y, \ldots, y}_{m+1 \text {-many }}, x, x, \ldots\rangle \notin \operatorname{Sg}_{\mathbf{c}}(Y)$.
True, if \mathbf{B} has an $m+1$-ary minority term. Can be fixed in general with an $m+1$-ary special weak near-unanimity operation:

$$
\begin{aligned}
& w(x, x, \ldots, x) \approx x \\
& w(y, x, \ldots, x) \approx w(x, y, x, \ldots, x) \\
& \approx \ldots \approx w(x, \ldots, x, y) \\
& w(w(y, x, \ldots, x), x, \ldots, x) \approx w(y, x, \ldots, x)
\end{aligned}
$$

and by changing the generator set Y.

- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true,

Conditions:

- ϑ has finitely many equivalence classes: true
- X is a union of equivalence classes: true
- the membership problem in ϑ is decidable: true
- $\operatorname{Sg}_{\mathbf{c}}(Y)$ is a union of equivalence classes: not true

For example, $r(\langle y, x, x, \ldots\rangle)=\langle\underbrace{y, \ldots, y}_{m+1 \text {-many }}, x, x, \ldots\rangle \notin \operatorname{Sg}_{\mathbf{c}}(Y)$.
True, if \mathbf{B} has an $m+1$-ary minority term. Can be fixed in general with an $m+1$-ary special weak near-unanimity operation:

$$
\begin{aligned}
& w(x, x, \ldots, x) \approx x \\
& w(y, x, \ldots, x) \approx w(x, y, x, \ldots, x) \\
& w \cdots \approx w(x, \ldots, x, y) \\
& w(w(y, x, \ldots, x), x, \ldots, x) \approx w(y, x, \ldots, x)
\end{aligned}
$$

and by changing the generator set Y.

- the multi-valued operations of \mathbf{C} / ϑ are effectively computable: true, but not trivial

Thm. Let \mathbf{A} be a finite algebra on an n-element set with operations of maximum arity of k. If \mathbf{A} has a near-unanimity term operation, then it has one with arity at most

$$
2^{2^{2^{c k n} n^{2}}}
$$

for some constant c.
Cor. It is decidable of a finite algebra in a congruence distributive (join-semi-distributive) variety whether it admits a natural duality.

Open Porblem 1. (Davey, McKenzie) Natural duality problem.
Open Problem 2. Given a finite partial algebra, decide whether it has a term that is defined on all near-unanimous assignments and satisfies the near-unanimity identities.

Open Problem 3. (Feder) Given a finite set Γ of relations on a finite set, decide whether there exists a near-unanimity operation that is compatible with each member of Γ.

Open Problem 4. (Zádori) Is there a finite set of relations on a finite set such that the clone of compatible operations is congruence distributive but contains no near-unanimity operation?

Open Problem 5. Given a finite set of operations on a finite set, decide if the clone of compatible relations is finitely generated.

Open Problem 6. Given a finite set of relations on a finite set, decide if the clone of compatible operations is finitely generated.

Open Problem 7. Given a finite set of operations and a finite set of relations on the same underlying set, decide if the functional and relational clones they generate are duals of each other.

Thm. The existence of an edge-term in a finite algebra is decidable

$$
\begin{aligned}
& t(y, y, x, x, x, \ldots, x) \approx x, \\
& t(y, x, y, x, x, \ldots, x) \approx x, \\
& t(x, x, x, y, x, \ldots, x) \approx x, \\
& t(x, x, x, x, y, \ldots, x) \approx x,
\end{aligned}
$$

Def. A finite algebra \mathbf{A} has few subpowers if there is some polynomial $p(n)$ such that the

$$
\log _{2} \mid\left\{B: B \text { is a subuniverse of } \mathbf{A}^{n}\right\} \mid \leq p(n) \text {. }
$$

> Thm. (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2006) A finite algebra \mathbf{A} has few subpowers if and only if it has an edge term operation.

Thm. The existence of an edge-term in a finite algebra is decidable

$$
\begin{aligned}
& t(y, y, x, x, x, \ldots, x) \approx x \\
& t(y, x, y, x, x, \ldots, x) \approx x \\
& t(x, x, x, y, x, \ldots, x) \approx x \\
& t(x, x, x, x, y, \ldots, x) \approx x,
\end{aligned}
$$

Def. A finite algebra \mathbf{A} has few subpowers if there is some polynomial $p(n)$ such that the

$$
\log _{2} \mid\left\{B: B \text { is a subuniverse of } \mathbf{A}^{n}\right\} \mid \leq p(n)
$$

Thm. (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2006) A finite algebra \mathbf{A} has few subpowers if and only if it has an edge term operation.

Thm. (Barto, Kozik, Niven, 2007) Every finitely generated congruence distributive variety has a cyclic term, i.e. a term t satisfying the identities

$$
\begin{gathered}
t(x, x, \ldots, x) \approx x \\
t\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right) \approx t\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right) \quad(n \geq 2) .
\end{gathered}
$$

Cyclic terms are special weak near-unanimity terms.
Open Problem 8. Given a finite algebra, decide if it has a cyclic term satisfying the identities

Open Problem 9. Find a Mal'tsev condition that is undecidable for finite algebras.

